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SUMMARY

It is well known that high-order finite-difference methods may become unstable due to the presence
of boundaries and the imposition of boundary conditions. For uniform grids, Gustafsson, Kreiss, and
Sundström theory and the summation-by-parts method provide sufficient conditions for stability. For
non-uniform grids, clustering of nodes close to the boundaries improves the stability of the resulting
finite-difference operator. Several heuristic explanations exist for the goodness of the clustering, and
attempts have been made to link it to the Runge phenomenon present in polynomial interpolations of high
degree.

By following the philosophy behind the Chebyshev polynomials, a non-uniform grid for piecewise
polynomial interpolations of degree q�N is introduced in this paper, where N + 1 is the total number
of grid nodes. It is shown that when q = N , this polynomial interpolation coincides with the Chebyshev
interpolation, and the resulting finite-difference schemes are equivalent to Chebyshev collocation methods.
Finally, test cases are run showing how stability and correct transient behaviours are achieved for any
degree q<N through the use of the proposed non-uniform grids. Discussions are complemented by spectra
and pseudospectra of the finite-difference operators. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The rise of computers and their use to solve physical problems numerically have constantly
increased the relevance of numerical methods. This has led over the past decades to a continuous
search for easier and better methods with greater accuracy and stability. High-order numerical
methods present much less error than second-order methods for the same number of nodes or
degrees of freedom. The benefits in terms of required resources and computational time to achieve a
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certain level of accuracy are clear [1, 2]. Additionally, problems characterized by small length scales
cannot be addressed nowadays without the use of high-order numerical methods. Computational
acoustics and aeroacoustics, prediction of transition and direct numerical simulation of turbulence
are typical examples of such problems [2, 3].

Depending on the regularity of the solutions, different numerical methods have been devel-
oped. While finite-volume, finite-element, and spectral Galerkin methods are obtained from the
integral formulation of the problem, finite-difference and spectral collocation methods are de-
rived from the differential form [4]. Finite-difference and spectral collocation methods seek to
enforce the system of partial differential equations of the problem on a discrete set of collo-
cation nodes. To approximate the derivatives in the equations, an interpolant is built using the
nodal values. The nature of the interpolant and of the chosen collocation nodes gives rise to dif-
ferent numerical methods, like Fourier and Chebyshev collocation methods and finite-difference
methods [5–7].

To analyse the stability of difference operators, different approaches have to be followed
depending on the nature of the problem. For normal problems, the behaviour of the system is
fully characterized by the spectrum of the operator. Therefore, the absence of eigenvalues with
positive real parts ensures stability and bounded errors at all times [8]. In contrast, for non-normal
problems, the eigenvalues are only relevant for the asymptotic behaviour of the system, allowing
arbitrarily large transient growth at finite times. To overcome this limitation, the pseudospectra of
the operator have to be studied, leading to necessary and sufficient conditions for stability at all
times [8].

The instabilities of finite-difference methods have been related to the way they treat boundary
conditions. Various approaches have been proposed to cure the problem. When uniform grids are
used, GKS (Gustafsson, Kreiss, and Sundström) theory [9] provides a sufficient test for stability and
a recipe for obtaining stable boundary treatments [10, 11] that do not cause radiation of spurious
waves into the computational domain [12]. Another approach, based on the energy method and
the boundness of the numerical energy, leads to modified stable finite-difference schemes which
are known as summation-by-parts methods (SBP) [13–16]. When non-uniform grids are used,
clustering of nodes close to the boundaries cures the instability problems of high-order numerical
methods [17–19]. This observation has prompted the use of clustered nodes at the boundaries by
several authors [1, 18–20].

The approximation of smooth functions by polynomial interpolations on equispaced nodes can
give rise to vigorous oscillations of the interpolant near the boundaries. This undesired effect
is known as Runge phenomenon [21–23]. A well-known remedy to this problem is to use the
Chebyshev roots as interpolation nodes, which minimize these undesired oscillations and lead to
well-behaved polynomial interpolations. Some progress has been made to explain the goodness of
clustering in finite-difference methods through the Runge phenomenon [1, 17, 18]. However, the
question of which node distributions should be used is still not answered.

The purpose of this paper is to develop stable high-order finite-difference methods based on non-
uniform grids, which are derived by following the philosophy behind the Chebyshev polynomials
of minimizing the vigorous oscillations associated to the Runge phenomenon.

The paper is organized as follows. Section 2 reformulates the finite-difference methods in
terms of piecewise polynomial interpolations on non-uniform grids. Then, Section 3 discusses
the different factors contributing to the interpolation errors, showing that the use of Chebyshev
roots as grid points leads to minimum errors. Section 4 presents the algorithm for obtaining
the non-uniform grids that minimize the error of piecewise polynomial interpolations, followed
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by discussions of the resulting interpolation errors and node distributions. Thereafter, Section 5
analyses the spatial discretization errors resulting from the discretization of differential operators.
The performance of the use of the proposed grids is shown in Section 6 by solving several
normal and non-normal problems. The wave equation with reflecting boundary conditions is
studied in Section 6.1, while Section 6.2 compares the proposed finite-difference methods with the
high-order numerical methods proposed by Zhong and Tatineni [18] using the one-dimensional
convection equation. Then, Section 6.3 deals with the non-normal convection–diffusion operator
and its transient solutions. Section 6.4 compares the proposed finite-difference methods with
the SBP method proposed by Mattsson and Nordström [16], the Chebyshev collocation method,
and the mapped Chebyshev collocation methods proposed by Kosloff and Tal-Ezer [24–26], and
analyses their computational cost for the solution of a convection–diffusion problem. Finally,
Section 6.5 extends the proposed grids to multiple dimensions by solving the wave equation in a
two-dimensional square box.

2. FINITE DIFFERENCES VIA PIECEWISE POLYNOMIAL INTERPOLATIONS

Consider the following initial boundary value problem for u(x, t) given by the evolution equation:

�u
�t

=L

(
u,

�u
�x

,
�2u
�x2

)
(1)

and the boundary and initial conditions

B1(u, �u/�x) = 0, x = −1

B2(u, �u/�x) = 0, x = +1
(2)

u(x, 0)= f (x) ∀x ∈ [−1, +1] (3)

Equation (1) allows to evolve u(x, t), constrained by the boundary conditions (2), from the initial
condition (3) to a desired time t>0.

An approximate solution to the formulated differential problem is obtained by discretizing the
spatial domain [−1,+1] in N+1 nodes {xi , i = 0, . . . , N } and considering the corresponding nodal
values ui (t) as unknowns of the semidiscrete problem, whose temporal evolution is governed by
the following system of ordinary differential equations:

dui
dt

= Li (u0, u1, . . . , uN ), i = 1, . . . , N − 1 (4)

and the following constraints and initial conditions:

B1(u0, u1, . . . , uN ) = 0, i = 0

B2(u0, u1, . . . , uN ) = 0, i = N
(5)

ui (0) = f (xi ), i = 0, . . . , N (6)

To obtain the difference operator (4) and boundary conditions (5) that approximate their dif-
ferential counterparts (1) and (2), a piecewise polynomial interpolant for the sufficiently smooth
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Centered stencils

Figure 1. Stencils of the individual interpolants Ii (x) for a piecewise polynomial interpolation of
degree q = 6 on 11 nodes (N = 10). The dashed box separates the centred stencils from those affected

by the presence of the boundaries.

function u(x, t) is constructed that matches the discrete values ui (t) at xi . This interpolant is used
to approximate the derivatives of u(x, t) at the nodes xi , leading finally to the semidiscretized
problem (4)–(6).

Each of the individual interpolants Ii (x) that form the piecewise approximation is only valid in
a subdomain �i that includes the node xi and is defined as

�i : [xi−1/2, xi+1/2), i = 0, . . . , N (7)

where the subdomain limits xi−1/2 and xi+1/2 are not relevant for the moment and, therefore, their
definition is postponed. These interpolating polynomials of degree q�N are built by forcing them
to satisfy a set of q + 1 distinct pairs of values (x j , u j (t)). The resulting expressions for Ii (x) can
easily be obtained through the Lagrange interpolation formulae [27, 28]:

Ii (x)=
si+q∑
j=si

�i j (x)u j , �i j (x)=
q∏

m=0
si+m �= j

x − xsi+m

x j − xsi+m
(8)

For centred finite-difference formulas, the polynomial degree q has to be chosen even, and

{si }={0, . . . , 0︸ ︷︷ ︸
q/2 times

, 0, 1, . . . , N − q︸ ︷︷ ︸
centred FD

, N − q, . . . , N − q︸ ︷︷ ︸
q/2 times

} (9)

The resulting finite-difference expressions for the derivatives of u(x, t) will be centred for nodes xi
sufficiently far away from the boundaries of the interval [x0, xN ], whereas close to the boundaries
these expressions will be biased towards the centre of the interval, as can be seen in Figure 1,
which shows the stencils of the interpolants for the case q = 6 and N = 10.
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If the polynomial degree q is chosen odd instead, then

{si } ={ 0, . . . , 0︸ ︷︷ ︸
(q−1)/2 times

, 0, 1, . . . , N − q︸ ︷︷ ︸
uncentred FD

, N − q, . . . , N − q︸ ︷︷ ︸
(q+1)/2 times

} (10)

and the resulting finite-difference expressions will be slightly uncentred to the right.

3. INTERPOLATION ERRORS ASSOCIATED WITH A GIVEN GRID

The pointwise error between u(x, t) and the piecewise polynomial interpolant is defined as

εi (x)= u(x, t) − Ii (x) ∀x ∈ �i (11)

Again, a simple expression for εi (x) can be obtained through the Lagrange interpolation formulae
for the case of sufficiently smooth functions [28]:

εi (x)= �i (x)
u(q+1)(�)

(q + 1)! (12)

where � = �(x) is some point in the interval [xsi , xsi+q ] and �i (x) is the following polynomial of
degree q + 1:

�i (x)=
q∏

m=0
(x − xsi+m) (13)

Two different factors contribute to the pointwise error εi (x) in (12): (i) the (q + 1)st derivative
of the interpolated function u(x, t) and (ii) the polynomial factor �i (x). In order to reduce the
interpolation error, nothing can be done to improve the regularity of the function to interpolate,
whereas the magnitude of �i (x) can be minimized by properly selecting the interpolation nodes xi .

To enlighten the discussion, the particular case q = N is considered next, for which only one
polynomial can be constructed out of the N+1 interpolation nodes and, therefore, all the interpolants
Ii (x) collapse into one, as well as the polynomial factors �i (x)= �(x).
It is well known [6, 7, 21–23] that the use of equally spaced nodes xi leads to large oscillations

of �(x) near the boundaries of the interval [x0, xN ], and therefore to large interpolation errors.
This undesired effect, known as Runge phenomenon, can be observed in Figure 2(a), where the
absolute value of �(x) is represented on the interval [−1,+1] for the case N = 10. The extrema
of �(x), which are located between adjacent nodes, reach significantly larger values close to the
boundaries than far from them.

The question regarding which nodes minimize the oscillations of the polynomial factor was
addressed by Chebyshev [21], who demonstrated that the use of the Chebyshev roots as interpolation
nodes leads to interpolations with the lowest achievable pointwise error. Chebyshev showed that a
necessary and sufficient condition for this property is that all the extrema of |�(x)| reach the same
value. If y1, . . . , yN represent the roots of the Chebyshev polynomial TN (x), then an interpolant
of degree N − 1 based on these nodes presents minimum oscillations in �(x). This can be seen in
Figure 2(b).

The main drawback of the Chebyshev roots is the absence of the locations x = ± 1, which is an
inconvenience for the enforcement of boundary conditions at the limits of the interval. Therefore,
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Figure 2. Absolute value of the polynomial factor �(x) for q = N = 10: (a) equispaced nodes; (b) Chebyshev
roots; and (c) Chebyshev extrema. (d) Rate of decay of |�(x)|max with the number of nodes N : Chebyshev

roots (dotted), Chebyshev extrema (solid), and equispaced nodes (dashed).

a more convenient set of nodes has to be found. If x0, . . . , xN denote the Chebyshev extrema
of TN (x), which include x0 =−1 and xN = +1, then an interpolant of degree N based on these
nodes behaves almost as good as the one based on the Chebyshev roots [5]. Although the resulting
polynomial factor �(x) does not oscillate uniformly, as can be seen in Figure 2(c), both sets of
nodes present similar convergence properties. This is shown in Figure 2(d), where the rate of decay
of the maximum value of |�(x)| is represented. The committed error using equispaced nodes is
several orders of magnitude larger than when using Chebyshev roots or Chebyshev extrema.

The next section will proceed similarly and apply the same philosophy to the generic case q<N .

4. NON-UNIFORM GRIDS FOR PIECEWISE POLYNOMIAL INTERPOLATIONS
WITH UNIFORM ERROR

When q<N , neither the Chebyshev roots nor the Chebyshev extrema minimize the error of the
piecewise polynomial interpolation. To find the equivalent grid for q<N , two piecewise polynomial
interpolations are considered: one of degree q − 1 based on the unknown nodes y1, . . . , yN
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(equivalent to the Chebyshev roots when q = N ), and a second one of degree q based on the
extrema x0, . . . , xN (equivalent to the Chebyshev extrema when q = N ) of the first one, which
include x0 = −1 and xN =+1. By imposing equal maximum amplitudes for all the polynomial
factors �i (x), the equivalent grid x0, . . . , xN is obtained.

The algorithm can be summarized as follows:

1. Consider N unknown nodes y1, . . . , yN in the interval [−1,+1] and build out of them a
piecewise polynomial interpolation of degree q − 1.

2. Look for the extremum of each polynomial factor �i (x) in its subdomain [yi , yi+1)

�′
i (x)= 0, i = 1, . . . , N − 1 (14)

and label the extrema as x1, . . . , xN−1. Complete the set with the locations x0 = −1 and
xN = +1.

3. Impose equal amplitudes at the extrema of the polynomial factors:

|�1(x0)| = |�1(x1)| = |�2(x2)| = · · · = |�N−1(xN−1)| = |�N−1(xN )| (15)

Since the locations of the extrema x1, . . . , xN−1 depend on y1, . . . , yN , the above conditions
represent a non-linear system of N equations for the N unknowns y1, . . . , yN .

4. Known the values of y1, . . . , yN , build the piecewise polynomial interpolation of degree
q using x0, . . . , xN as collocation nodes. The subdomains for the different interpolants
will be

�0 = [−1, y1), �i = [yi , yi+1), �N = [yN , +1] (16)

which finally gives the definition for the subdomain limits (7) introduced before.

The non-linear system of equations (15) has to be solved using a Newton–Raphson method.
Since the radius of convergence of this method is relatively small, the solution is obtained through
a continuation method in q . The resulting algorithm takes, on a standard personal computer
(Pentium IV or similar), of the order of seconds to obtain the solution for typical values of
N =O(100) and q =O(10). Taking into account that the grid point distribution only needs to be
precomputed once and for all, its cost is clearly negligible when compared with the total cost of
a typical numerical simulation.

In order to see the aspect of the resulting grids, consider a piecewise polynomial interpolation
of degree q = 6 on N = 10 nodes. Figure 3(a) shows the absolute value of the polynomial factors
�i (x) in their respective subdomains �i . The general shape resembles the one in Figure 2(c),
which corresponds to q = N = 10 using Chebyshev extrema. The clearly visible discontinuities in
Figure 3(a) are located at the subdomain limits yi and are caused by a change of subdomain �i and
interpolating polynomial, in accordance with the stencils given in Figure 1. The amplitude of these
discontinuities can be obtained by comparing two polynomial factors �i (x), of two consecutive
subdomains, evaluated at the common subdomain limit yi :

|�i (yi )| − |�i−1(yi )| = [|yi − xsi+q | − |yi − xsi−1 |]
q−1∏
m=0

|yi − xsi+m |

=
[
1 − |yi − xsi−1 |

|yi − xsi+q |
]

|�i (yi )| (17)
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Figure 3. (a) Values of |�i (x)| in their respective subdomains �i for the proposed non-uniform grid
with q = 6 and N = 10. (b) Grid spacing �xi = xi+1 − xi of the proposed non-uniform grid (solid), the

Chebyshev extrema (dotted), and the equispaced grid (dashed).

where the fact that the two polynomial factors only differ by one root has been taken into account.
Two different factors contribute to the amplitude of these discontinuities: (i) the relative distance
to yi of the farthest nodes involved in the interpolations and (ii) the amplitude of the polynomial
factor. For smoothly varying grid point distributions, the first factor is small, and the jumps
at the subdomain limits are smaller than the interpolation error of O(|�i (yi )|). It is important
to note that these discontinuities are not located at the nodes xi on which the interpolant is
used to approximate the derivatives and, therefore, are not seen by the finite-difference method.
Figure 3(b) shows the corresponding grid spacing �xi = xi+1 − xi . The proposed non-uniform
grids present their maximum grid spacing off the centre of the domain. This unexpected result has
no further consequences on the interpolation error, as the amplitudes of the polynomial factor in
Figure 3(a) show.

Two different limiting cases are very enlightening: (i) q = N and (ii) q � N . In the first
case, the proposed algorithm matches the steps followed in the previous section and, therefore,
returns the extrema of TN (x) as collocation nodes x0, . . . , xN and the roots of TN (x) as sub-
domain limits y1, . . . , yN . Since there is a unique interpolating polynomial of degree N , the
expressions for the Lagrange interpolation and the discrete Chebyshev series coincide, and all
the properties of the Chebyshev collocation methods are enforceable, specially their spectral
accuracy [5–7]. In the second case, when q � N , only a few points O(q) close to the bound-
aries need to be displaced in order to control the oscillations of the pointwise error. Far from
them, the influence of the boundaries is negligible and the resulting node distribution is equi-
spaced. This can be seen in Figure 4, where 4(a) shows the absolute value of the polynomial
factors �i (x) in their respective subdomains �i and 4(b) the grid spacing �xi = xi+1 − xi of
the proposed non-uniform grid, both for a piecewise polynomial interpolation of degree q = 6 on
N = 30 nodes.
Finally, when q<N , most of the nodes are affected by the presence of the boundaries and the

resulting node distributions are in between the two limiting cases. This can be seen in Figure 5(a),
where the grid spacing of the proposed non-uniform grids for different values of q and N = 50 is
shown. As the degree of the interpolation increases, the node distribution approaches the Chebyshev
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Figure 5. (a) Grid spacing of the proposed non-uniform grid (solid) for N = 50 and q = 10, 20, 30, 40,
the Chebyshev extrema (dotted), and the equispaced grid (dashed). (b) Variation of |�(x)|max (solid) and

�xmin,Ch/�xmin (dashed) with q for the proposed non-uniform grid with N = 50.

extrema distribution, while for small values of q it is more close to the equispaced one. Figure 5(b)
shows how the maximum value of the polynomial factors |�i (x)| varies with q for N = 50. The
presence of a minimum in |�(x)|max of three orders of magnitude lower than for the Chebyshev
interpolation shows that the best interpolation is achieved for q<N . Figure 5(b) also shows that
the minimum grid spacing �xmin is always greater than the minimum grid spacing �xmin,Ch of the
Chebyshev extrema: �xmin =O(�xmin,ChN/q) =O((qN )−1).

The clustering of grid nodes caused by the use of the proposed non-uniform grids is independent
of the problem to be solved, and has only to do with the interpolation, just as in Chebyshev
collocation methods.
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5. SPATIAL DISCRETIZATION ERRORS

Until now, only the interpolation errors of piecewise polynomial interpolations were of concern.
But small interpolation errors do not necessarily mean small spatial discretization errors, as these
may grow unbounded or present anomalous transient behaviours due to spatial discretizations [20].

The spatial discretization errors are defined as the differences between the exact solution u(x, t)
at the collocation nodes and the solution ui (t) of the semidiscrete problem (4)–(6):

Ei (t) = u(xi , t) − ui (t), i = 1, . . . , N − 1 (18)

A system of equations for their temporal evolution can be obtained by subtracting (4) from (1) at
the collocation nodes. For linear differential operators in (1),

dE
dt

=AE + R (19)

where A is the N −1× N −1 matrix which is the difference operator with homogeneous boundary
conditions, and R(t) is the N − 1 column vector with the truncation errors, which for linear
operators are given by

Ri =L(ε)|xi , i = 1, . . . , N − 1 (20)

being ε(x) the interpolation error defined in (11). If A is constant, then (19) has the following
analytical solution:

E(t) = eAtE(0) +
∫ t

0
eA(t−�)R(�) d� (21)

Assuming that the initial condition is exact, the spatial discretization error at t = T can be
bounded by

‖E‖� sup
t∈[0,T ]

‖eAt‖ sup
t∈[0,T ]

‖R‖T (22)

For vectors, ‖ · ‖ denotes the weighted vector norm that approximates the continuous L2-norm on
functions [29, 30], and for matrices it denotes the corresponding subordinate matrix norm. From a
practical point of view, it is desirable that (22) is at most O(‖R‖T ) for a time of integration T , so
that the spatial discretization error behaves with N in the same way as the truncation error does.
Therefore, an upper bound for ‖eAt‖ is necessary in order to know the accuracy of the scheme. In
the most general case, the following upper bound in terms of the spectral abscissa �(A) can be
obtained [8]:

‖eAt‖��e�t , �(A) = sup
z∈�(A)

Re(z) (23)

where �(A) represents the spectrum of A and �(V)= ‖V‖‖V−1‖ is the condition number of the
matrix of eigenvectors V of A.

When the spatial discretization of a given problem leads to a normal matrix (AAT =ATA),
then � = 1 and the fundamental matrix is bounded by unity if ��0, which happens when all the
eigenvalues of A have a negative real part. Otherwise, if �>0, the norm of the fundamental matrix
is not bounded as t → ∞ and, consequently, the norm of the error grows without bound.
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When the spatial discretization of a given problem leads to a non-normal matrix (AAT �=ATA), the
condition number � can be very large. In that case, for finite times t = T , the spatial discretization
error may grow larger than the truncation error, even when ��0 (which now only ensures that the
error goes to zero as t → ∞). Therefore, for non-normal matrices it is not sufficient to analyse
their eigenvalues to know the accuracy of the numerical method. To bound ‖eAt‖ and to assure
small spatial discretization errors for finite times, the pseudospectra of the matrix A can be used.
For each ��0, a subset of the complex plane, the �-pseudospectrum of A, is defined as follows [8]:

��(A) ={z ∈ C : z ∈ �(A + �A) for some �A with ‖�A‖��} (24)

The �-pseudospectrum of a matrix measures the sensitivity of its eigenvalues to perturbations of
the matrix of amplitude ‖�A‖�� [8]. If the matrix A is normal, the �-pseudospectrum is exactly
the set of points in the complex plane located at a distance �� from the eigenvalues of A, but if
the matrix is non-normal, it covers a much larger portion of the complex plane.

By making use of the Cauchy integral, the following upper bound can be obtained [8, 29, 30]:

‖eAt‖� 1

2��

∫
���(A)

et Re(z)|dz|� L�

2��
e��t (25)

where ���(A) is the boundary of��(A), L� the arc length of ���(A), and ��(A) the �-pseudospectral
abscissa of A:

��(A) = sup
z∈��(A)

Re(z) (26)

which represents the rightmost point of the �-pseudospectrum. If ��>0, which means that the
�-pseudospectrum protrudes into the right half-plane, a lower bound for ‖eAt‖ can also be derived
by means of the Laplace transform [8, 31]:

��

�
� sup

t�0
‖eAt‖ (27)

This lower bound combined with the upper bound (25) allows to know the magnitude of the norm
of the fundamental matrix and with it the spatial discretization error of the numerical method:

��

�
� sup

t∈[0,T ]
‖eAt‖� L�

2��
e��tmax (28)

where tmax is the time, of order unity, at which the maximum value of ‖eAt‖ is achieved. Different
values of �>0 lead to different lower and upper bounds, and the largest and lowest of all of them,
respectively, give precise bounds of the norm of the fundamental matrix.

In summary, when the spatial discretization of a given problem leads to a normal matrix A,
then the eigenvalue analysis of that matrix is enough to ensure stability and to bound the spatial
discretization errors at all times t . But when the resulting matrix is non-normal, the eigenvalue
analysis only ensures asymptotic stability and small errors for t →∞, and the pseudospectra
analysis is required to obtain bounds for the spatial discretization errors at finite times t = T .
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6. NUMERICAL EXAMPLES

To show the goodness of the proposed non-uniform grids and their associated finite-difference
schemes, three representative problems are solved: the wave equation and the convection equation as
examples of normal problems and the convection–diffusion equation as an example of non-normal
problem. Comparisons with other high-order numerical methods are made and the computational
cost of the proposed finite-difference methods is analysed. Finally, the extension to multiple
dimensions is demonstrated by solving multiple reflexions of a pressure wave inside a two-
dimensional rectangular box.

Time integration has been accomplished by a classical fourth-order Runge–Kutta method. Since
only the spatial discretization errors are of interest, time steps have been chosen small enough to
ensure negligible time integration errors.

6.1. One-dimensional wave equation

Consider the one-dimensional wave equation

�2 p
�t2

= �2 p
�x2

(29)

with the following boundary and initial conditions,

�p
�x

(0, t) = 0,
�p
�x

(1, t) = 0 (30)

p(x, 0) = e−500(x−0.5)2,
�p
�t

(x, 0) = 0 ∀x ∈ [0, 1] (31)

Introducing the auxiliary variable v = �p/�t , the differential operator in (1) for the variables (p, v)

will be

L(p, v) =
(

v,
�2 p
�x2

)T

(32)

The interest in this test case, of hyperbolic character, resides in the existence of a temporal
periodic solution which allows the exact determination of spatial discretization errors. In this case,
the matrix A resulting from the spatial discretization of the problem is normal, which means that
the eigenvalues of A determine its behaviour and that of the spatial discretization error [8].

It is well known that when high-order explicit finite-difference methods are applied to hyperbolic
problems on uniform grids, the discretized boundary conditions may lead to unstable difference
operators [9–11]. This can be observed in Figure 6(a), where stable numerical solutions are obtained
for q�6 while unstable behaviours arise for q�8. The instabilities come from the existence of
eigenvalues with positive real parts, as shown in Figure 6(b), where the spectrum of A for q = 8
is shown.

The cure for these numerically induced instabilities can be found in the proposed non-uniform
grids. Figure 7(a) compares different solutions at t = 10 obtained with different degrees q , showing
that stable behaviours are achieved for all values of q . Finally, Figure 7(b) shows the rate of decay
of the maximum spatial discretization error until round-off with the number of nodes for different
values of q .
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Figure 6. (a) Numerical solutions for the wave equation at t = 0.6 obtained with N = 50 and �t = 0.0001
on an equispaced grid. (b) Eigenvalues of the difference operator for q = 8.
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Figure 7. (a) Numerical solutions for the wave equation at t = 10 obtained with N = 50 and
�t = 0.0001 using the proposed non-uniform grids. (b) Rate of decay of the maximum discretization

error |E|max with N for q = 4, 8, . . . , 28.

6.2. One-dimensional convection equation

Consider the one-dimensional convection equation

�u
�t

= −�u
�x

(33)

with the following boundary condition at the left end of the domain [−1, 1]:
u(−1, t) = sin(�t) (34)

This test case, proposed by Zhong and Tatineni [18], admits the following time periodic solution:

u(x, t) = sin(�(t − x − 1)) (35)
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Figure 8. (a) Rate of decay of the maximum discretization error |E|max with N for q = 2, 4, . . . , 12 for
the proposed non-uniform grids (hollow circles) and the Kosloff and Tal-Ezer grid with �= 0.91 used
in [18] (filled squares). (b) Minimum grid spacing �xmin/�xuniform as a function of N and q for the

proposed non-uniform grids (hollow circles) and the grids used in [18] (filled squares).

which allows the exact determination of the committed numerical errors. In [18], the following
non-uniform grid point distribution, first introduced by Kosloff and Tal-Ezer [24], is proposed to
alleviate the stability problems of high-order finite-difference methods:

xi = sin−1(−� cos(�i/N ))

sin−1 �
, i = 0, . . . , N (36)

This distribution depends on the free parameter �, which in the case of the computations performed
in [18] is chosen to be � = 0.91. Figure 8(a) shows the maximum spatial discretization error |E|max
which results from the use of the different non-uniform grid point distributions. As in the previous
case of the one-dimensional wave equation, the use of the proposed non-uniform grids leads to
errors which decay until round-off with the number of nodes and for different values of q . Compared
to Zhong and Tatineni, both grid point distributions lead to finite-difference methods which perform
similarly in terms of spatial discretization errors, as Figure 8(a) indicates. Figure 8(b) shows the
minimum grid spacings of the non-uniform grids employed in the computation of the results shown
in Figure 8(a). Although is seems that the proposed non-uniform grids excel in this point, this is
only true for the value of � used in [18]. By trial and error, the precise value of � required to make
the numerical method stable can be obtained as a function of N and q [18]. If these values of � are
used, then the minimum grid spacings turn out to be quite similar. In view of these results, it can
be inferred that the proposed non-uniform grid point distributions automatically incorporate the
necessary amount of grid clustering at the boundaries to ensure the stability of the finite-difference
approximation.

6.3. One-dimensional convection–diffusion equation

Consider the one-dimensional convection–diffusion equation

�u
�t

= �u
�x

+ �2u
�x2

(37)
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Figure 9. Transient behaviour of numerical solutions of the convection–diffusion equation with
d = 40 at t = 1, obtained with N = 30, q = 12, and �t = 0.0001 on (a) an equispaced grid and
(c) the proposed non-uniform grid. Eigenvalues (solid circles) and pseudospectra (solid lines) of
the corresponding difference operator obtained on (b) an equispaced grid and (d) the proposed

non-uniform grid. Contours at �= 10−1, 10−2, . . . , 10−7.

with the following boundary and initial conditions,

u(0, t) = 0, u(d, t) = 0 (38)

u(x, 0) = e−(x−3d/4)2/2 ∀x ∈ [0, d] (39)

The aim of this test case is to show the impact of different spatial discretizations on the prediction
of transient behaviours of non-normal problems. The values N = 30 and d = 40 are chosen to
allow direct comparisons with previous work done by Reddy and Trefethen [32].

Figure 9(a) shows the numerical solution at t = 1 obtained using a piecewise polynomial
interpolation of degree q = 12 on an equispaced grid. Although the numerical method is asymp-
totically stable, as the eigenvalues in Figure 9(b) indicate, the transient solution presents an
anomalous peak that reaches a value of order 10. The explanation of it can be found in the
pseudospectra of the difference operator also shown in Figure 9(b), which significantly protrudes
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Figure 10. Eigenvalues (solid circles) and pseudospectra (solid lines) of the difference operator obtained
from the convection–diffusion operator with d = 40 using the proposed non-uniform grids with N = 30
and (a) q = 14 and (b) q = 30 (Chebyshev). Contours at � = 10−1, 10−2, . . . , 10−7. Eigenvalues (empty

circles) and pseudospectra (dashed lines) of the corresponding differential operator are also shown.

for � = 10−1 into the right half-plane. The consequence of it are large lower and upper bounds
for ‖eAt‖ as given by (28) allowing for spatial discretization errors larger than the truncation
errors.

Instead, if the proposed non-uniform grids are used, the transient solution behaves correctly and
the pseudospectra does not protrude anomaly into the right half-plane, as seen in Figure 9(c) and (d),
leading to smaller lower and upper bounds for ‖eAt‖ and, consequently, to spatial discretization
errors of the same order as the truncation errors.

In view of the results, it seems reasonable to expect, that a good spatial discretization not
only approximates correctly the eigenvalues of the differential operator, but also its pseudospectra
[20, 32]. Reddy and Trefethen [32] pointed out that good agreements in the vicinity of the imagi-
nary axis correspond to smooth solutions that are well resolved by the discretization. Such good
agreements can be observed in Figure 10, where the eigenvalues and pseudospectra of difference
operators, obtained for different values of q , are shown together with the ones of the differential
operator.

Remarkable is the fact that the finite-difference method using the proposed non-uniform grid
and q = 14 performs similar as the Chebyshev collocation method in terms of approximating the
eigenvalues and pseudospectra of the differential operator.

6.4. Computational cost

The number of operations, or computational cost, of a numerical simulation is the product of the
number of operations Nops related to the spatial discretization times the number of time steps
required to reach a final simulation time.

The cost involved in the spatial discretization is mainly due to the required derivatives of the
interpolant I (x) at all the grid nodes. Once the coefficients �′

i j (xi ) in (8) have been precomputed,
this cost is of order qN for the proposed finite-difference methods [33]. For Chebyshev collocation
methods, this cost is of order 5N log2 N due to the fast-Fourier transformations used for the
computation of the derivatives [5].
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Figure 11. Comparison of spatial discretization errors ‖E‖ versus N for the solution of the convec-
tion–diffusion problem proposed in [16] using (a) Chebyshev collocation methods, summation-by-parts
methods (SBP) [16], the proposed finite-difference methods of degree q , and (b) the mapped Chebyshev
collocation methods from [24] with different criteria for the mapping parameter � [24, 26]. Problem

parameters are �= 10−1 and w = 5
√
3.

Regarding the cost of the temporal discretization, time step is limited by error considerations and
by stability constraints. Stability is ensured once the spectrum �(A) of the spatial discretization,
scaled by the time step �t , is kept inside the stability region of the time integration method [6].
Hence, a useful measurement of the time step restriction to ensure stability is the spectral radius
�(A) [30]:

�(A)= sup
�i∈�(A)

|�i | (40)

Once the stability constraint is fulfilled, the order of the temporal scheme is chosen such that
temporal and spatial errors are of same order of magnitude.

The following convection–diffusion problem proposed in [16] has been simulated to compare
spatial errors and computational cost of the proposed finite-difference methods with those of the
SBP methods of [16], the Chebyshev collocation methods, and the mapped Chebyshev collocation
methods proposed by Kosloff and Tal-Ezer [24]:

�u
�t

+ �u
�x

= �
�2u
�x2

(41)

−u(0, t) + �u
�x

(0, t) = g0(t),
�u
�x

(1, t) = g1(t) (42)

u(x, 0) = f (x) ∀x ∈ [0, 1] (43)

where the functions g0(t), g1(t), and f (x) are chosen such that

u(x, t) = sin[w(x − ct)]e−bx , c=
√
1 + 4w2�2, b= c − 1

2�
(44)

is a time periodic solution. Figure 11 compares the spatial discretization errors ‖E‖ resulting from
the use of the different numerical methods and different degrees q . The values of the parameters
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Figure 12. (a) Number of operations Nops =O(qN ) and (b) spectral radius �(A) of the spatial discretization
of the convection–diffusion problem proposed in [16] as a function of q for different error tolerances εtol.

Problem parameters are �= 10−3 and w = 10�.

�= 10−1 and w = 5
√
3 are chosen to match the test case conditions in [16]. For q = 4 and 6

the direct comparison with the results reported in [16] for the SBP methods shows that both
methods present similar discretization errors and the same convergence rate. It is also observed
that for a given number of nodes N , Chebyshev collocation methods present the smallest spatial
discretization errors. Figure 11(b) compares the proposed finite-difference methods with the mapped
Chebyshev collocation methods proposed by Kosloff and Tal-Ezer [24]. The employed values for
the mapping parameter � are obtained from resolution considerations [24], �r = cos(�/N ), accuracy
considerations [24], �a = cosh(| ln(10−16)|/N )−1, and an alternative accuracy criteria proposed by
Hesthaven et al. [26], �h = cos(0.5). As Mead and Renaut pointed out [25], the choice � = �r
leads to lost spectral accuracy, as can be observed in Figure 11(b). Choosing � = �a preserves
the spectral accuracy, but the resulting mapped method does not differ much from the Chebyshev
collocation method. Finally, the value �h = cos(0.5) proposed by Hesthaven et al. [26] leads to an
intermediate behaviour.

For a prescribed error tolerance ‖E‖= εtol, the necessary number of nodes N can be obtained
for each degree q . Figure 12 shows the number of operations Nops =O(qN ) and spectral radius
�(A) of the spatial discretization as a function of q and for different error tolerances. The more grid
demanding set of parameter values �= 10−3 and w = 10� is used in this figure. The initial steep
descent reflects the advantage of high-order finite-difference methods in terms of computational
cost, especially when small error tolerances are prescribed. However, the presence of a minimum
in the computational cost indicates the existence of an optimum degree q , which will be different
for each problem. Since it is not worth to go beyond that optimum degree, at least not in terms of
computational cost, it would be interesting to be able to know or estimate its value a priori.

Table I shows the number of nodes N , number of operations Nops, and spectral radius �(A)

required by the different numerical methods to obtain the solution of the proposed convection–
diffusion problem with a certain error tolerance. Generally, the mapped Chebyshev collocation
methods using � = �a and � = �h present smaller spectral radii than the Chebyshev collocation
method. Table I shows that the proposed finite-difference methods perform very similar to the
mapped Chebyshev collocation methods in terms of computational cost.
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Table I. Number of nodes N , number of operations Nops, and spectral radius �(A) of the spatial dis-
cretization of the convection–diffusion problem proposed in [16] for different error tolerances εtol, result
from using the Chebyshev collocation method, mapped Chebyshev collocation methods with two different
values of � [24, 26], and the proposed finite-difference methods with the corresponding optimum degree q .

Problem parameters are �= 10−3 and w = 10�.

Chebyshev Hesthaven: �h Kosloff: �a Finite differences

εtol N Nops �(A) N Nops �(A) N Nops �(A) q N Nops �(A)

10−2 24 550 110 18 375 44 23 520 96 6 40 240 69
10−4 28 673 151 24 550 72 26 611 120 10 45 450 118
10−6 32 800 199 32 800 123 28 673 138 14 48 672 169
10−8 35 898 308 42 1132 210 30 736 158 16 55 880 236
10−10 38 997 449 54 1554 644 31 768 165 20 55 1100 390

6.5. Two-dimensional wave equation

For two-dimensional rectangular grids, the piecewise polynomial interpolation to be used by the
finite-difference method can be constructed using a tensor product approach [21, 22]. The associated
interpolation error is then given by

εi j (x, y) = �i (x)

(q + 1)!
�q+1u

�xq+1
(�, y) + � j (y)

(q + 1)!
�q+1u

�yq+1
(x, 	)

− �i (x)

(q + 1)!
� j (y)

(q + 1)!
�2q+2u

�xq+1�yq+1
(�′, 	′) (45)

where �, 	, �′, and 	′ are some points in the interval [xsi , xsi+q ]×[ys j , ys j+q ]. Again, since nothing
can be done to improve the regularity of the function to interpolate, only the magnitudes of the
polynomial factors �i (x) and � j (y) can be minimized by properly selecting the interpolation nodes
xi and y j , which means that the proposed one-dimensional non-uniform grids can directly be used
to construct rectangular grids in multiple dimensions with the same properties.

To demonstrate this result, the two-dimensional wave equation

�2 p
�t2

= �2 p
�x2

+ �2 p
�y2

(46)

is solved in the domain � : [0, 1]× [0, 1] with the following boundary and initial conditions:

�p
�n

(x, y, t) = 0 ∀(x, y)∈ �� (47)

p(x, y, 0) = e−a((x−0.5)2+(y−0.5)2),
�p
�t

(x, y, 0) = 0 ∀(x, y) ∈ � (48)

whose analytical solution is given by the series

p(x, y, t) =
∞∑

m=0

∞∑
n=0

pmn cos(2�mx) cos(2�ny) cos
(
2�
√
m2 + n2t

)
(49)
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Figure 13. Numerical solutions of the wave equation in a reflecting 2D box at t = 7.5 for a = 100, obtained
using the proposed non-uniform grids with N = 20, �t = 0.0001 and (a) q = 2, (b) q = 4, (c) q = 6,

(d) q = 8, and (e) q = 16. (f ) Exact solution.
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with the following expressions, valid when a � 1, for the coefficients pmn :

pmn = (−1)m+n dmdn�

a
e− �2

a (m2+n2) (50)

where d0 = 1 and di = 2 otherwise. Using again the same auxiliary variable v = �p/�t , the differ-
ential operator in (1) for the variables (p, v) will be

L(p, v)=
(

v,
�2 p
�x2

+ �2 p
�y2

)T

(51)

The solution is a two-dimensional wave travelling at constant speed, reflecting at the boundaries,
and interfering with itself in the interior of the domain. Figure 13 shows the pressure field p(x, y, t)
for a = 100 at t = 7.5 computed using the proposed non-uniform grids with different degrees q
and N = 20: dark grey stands for the lowest value of the pressure and white for the highest value.
The computed solutions have been interpolated on finer grids for visualization purposes using the
same piecewise polynomial interpolation as in the corresponding computations.

The discontinuities of the interpolant at the subdomain limits are still visible in Figure 13(a),
which corresponds to q = 2. For higher-polynomial degrees, these discontinuities are no longer
noticeable, since their amplitudes decay at the same rate as the interpolation error does, as shown
in (17). Figure 13(b) shows the solution obtained with q = 4. Even though there is an improvement
with respect to the previous case, the accuracy of the solution is still very poor when compared
to the exact solution shown in Figure 13(f). Further increasing the degree of the polynomials
improves the accuracy of the solution, as can be seen in Figure 13(c)–(e). Finally, for q = 16, the
structures of the pressure field are well resolved almost everywhere in the computational domain,
as shown in Figure 13(e).

Figure 14(a) shows how the spatial discretization errors |E| are distributed in space at t = 7.5 for
a = 100 with N = 20 and q = 10: dark grey stands for |E| = 0 and white for |E| = |E|max = 0.02.
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Figure 14. (a) Spatial distribution of discretization errors |E| at t = 7.5 for a = 100 with N = 20 and
q = 10: dark grey stands for |E| = 0 and light grey for |E| = |E|max = 0.02. (b) Rate of decay of the

maximum discretization error |E|max with N for q = 4, 8, . . . , 28 and a = 500.
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The spatial structure of the error is associated with the number of nodes of the grid in each
direction. Finally, Figure 14(b) shows the rate of decay of the maximum spatial discretization error
until round-off with the number of nodes for different values of q . The more grid demanding value
a = 500 is used in this plot for visualization purposes.

7. CONCLUSIONS

The impact of the node distribution on the pointwise error of piecewise polynomial interpolations
has been analysed, and the idea of a non-uniform grid that minimizes that error introduced.
An algorithm to obtain the proposed non-uniform grids, given the number of nodes N and the
polynomial degree q , is presented and used to derive finite-difference approximations to normal
and non-normal problems. The following conclusions can be drawn:

1. Finite-difference methods shall use specific grids, exactly as Chebyshev collocation meth-
ods do.

2. For q = N , the Chebyshev interpolation theory is recovered, rendering Chebyshev collocation
methods as a particular case of the proposed finite-difference methods.

3. For q<N , the proposed non-uniform nodes are clustered close to the boundaries as a conse-
quence of error control, and not of the problem to be solved.

4. Stable finite-difference approximations to the one-dimensional and two-dimensional wave
equations are obtained for all degrees q .

5. Finite-difference approximations to the convection–diffusion equation correctly reproduce the
transient behaviours of the differential operator for all degrees q .

6. The proposed non-uniform grids lead to high-order finite-difference methods which are effi-
cient in terms of computational cost.

Extensions of the proposed finite-difference methods to curvilinear coordinates, using tensor
calculus, and to non-linear operators have already been done [34], while further research is required
to better understand the novel aspects of the proposed numerical methods, like the existence of an
optimum polynomial degree with respect to the computational cost.
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